Computing a pyramid partition generating function with dimer shuffling

نویسنده

  • Ben Young
چکیده

Abstract. We verify a recent conjecture of Kenyon/Szendrői by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson–Thomas theory of a non-commutative resolution of the conifold singularity {x1x2 −x3x4 = 0} ⊂ C. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp, [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Donaldson–Thomas theory and the conifold

Given a quiver algebra A with relations defined by a superpotential, this paper defines a set of invariants of A counting framed cyclic A-modules, analogous to rank-1 Donaldson–Thomas invariants of Calabi–Yau threefolds. For the special case when A is the non-commutative crepant resolution of the threefold ordinary double point, it is proved using torus localization that the invariants count ce...

متن کامل

Binary Codes and Kasteleyn 3-matrices

Abstract. Two cornerstones of the Kasteleyn method are: 1. rewriting the Ising partition function as the dimer partition function, that is, the generating function of the perfect matchings, and 2. expressing the dimer partition function of planar graphs as the determinant. This paper initiates the 3-dimensional Kasteleyn method. We show that the weight enumerator of any binary linear code is po...

متن کامل

Generating Functions for Colored 3d Young Diagrams and the Donaldson-thomas Invariants of Orbifolds

We derive two multivariate generating functions for threedimensional Young diagrams (also called plane partitions). The variables correspond to a colouring of the boxes according to a finite Abelian subgroup G of SO(3). We use the vertex operator methods of Okounkov– Reshetikhin–Vafa for the easy case G = Zn; to handle the considerably more difficult case G = Z2 × Z2, we will also use a refinem...

متن کامل

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

Generating Functions for Coluored 3d Young Diagrams and the Donaldson-thomas Invariants of Orbifolds

We derive two multivariate generating functions for threedimensional Young diagrams (also called plane partitions). The variables correspond to a colouring of the boxes according to a finite abelian subgroup G of SO(3). These generating functions turn out to be orbifold Donaldson–Thomas partition functions for the orbifold [C/G]. We need only the vertex operator methods of Okounkov–Reshetikhin–...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009